A New α -Seleno- or Nonselenoperfluoroacyl Olefination of Aldehydes and Ketones Using β -Ethoxy- β -perfluoroalkyl Vinylic Selenides

Yoshiaki Matsubara and Mitsuhiro Yoshimatsu*

Department of Chemistry, Faculty of Education, Gifu University, Yanagido, Gifu 501-11, Japan

Received March 7, 2000

 β -Alkoxy vinylic chalcogenides can be easily lithiated by treatment with strong base, and subsequent reactions with aldehydes and ketones afford the 2-chalcogeno allylic alcohols, which are potentially versatile precursors for the 2-chalcogene-substituted allylic cations¹ or their hydrolysis allows the α -chalcogeno formyl olefination of aldehydes and ketones.^{2,3}

To explore the α -chalcogene-substituted olefination, we planned to investigate the perfluoroacyl olefination of the aldehydes and ketones using the α -lithio- β -perfluoroalkyl vinylic chalcogenides. α -(Methylthio)- or α -(phenylthio)perfluoroacyl olefinations of the nonenolizable aldehydes have already reported to afford α -(thio)- α , β -unsaturated ketones in high yields;⁴ however, the α-seleno perfluoroacyl olefination could not be examined because β -alkoxy- β -perfluoroalkyl vinylic selenides were difficult to prepare by the same method as the sulfur analogues. It is a more efficient route than that of the α -thio-substituted olefination because a new perfluoroalkyl vinylic selenide could provide two kinds of vinyllithiums by deprotonation or transmetalation (Scheme 1).⁵ The reactions of each vinyllithium with aldehydes and ketones and the following process would accomplish the α -seleno or nonseleno perfluoroacyl olefination,⁶⁻⁸ respectively. Here we report a novel α -seleno- or nonseleno perfluoroacyl olefination of the aldehydes and ketones using β -ethoxy- β -perfluoroalkyl vinylic selenides.

Preparations of the β -ethoxy- β -perfluoroalkyl vinylic selenides **2**–**5** were performed by our original method. The vinylic selenides were obtained from the reactions between the lithiated⁵ bis(phenylseleno)methane (**1**) generated by the treatment with lithium 2,2,6,6-tetram-ethylpiperidide (LTMP) and RfCO₂Et at -50 °C followed

(5) Groebel, T.-G.; Seebach, D. *Chem. Ber.* **1977**, *110*, 867–877. Other bases were found less effective in the generation of the vinyllithium: Yoshimatsu, M.; Kinoshita, S. *Chem. Pharm. Bull.* **2000**, *48*, 415–417.

(7) Iminophosphonate route: Huang, W. S.; Yuan, C. Y. *J. Chem. Soc., Perkin Trans.* 1 1995, 741–742.
(8) Conjugate addition of the high order cyano cuprate to acetylenic

by the elimination of the phenylselenenyl group using methanesulfonyl chloride (Scheme 2).9 We first examined the deprotonation of the vinylic selenides by a few amide bases (method A).¹⁰ LTMP was found to be effective in their deprotonation of 2 and the reaction with benzaldehyde afforded the (E)-2-(phenylseleno)allylic alcohol 6a in 72% yield. The isomerization of **6a** by *p*-toluenesulfonic acid (1.1 equiv) gave (Z)-1,1,1-trifluoro-4-phenyl-3-(phenylseleno)but-3-en-2-one (14a) in 53% yield. Spectroscopic data, by showing the carbonyl absorption at v 1710 cm⁻¹ in the IR spectrum, exhibiting the olefinic proton at δ 8.14 ppm in the ¹H NMR spectrum, and also showing the trifluoromethyl carbon at δ 116.3 (J_{C-F} = 293 Hz) and the 2-C at δ 180.1 (J_{C-F} = 26 Hz) in the ¹³C NMR spectrum, indicated that the product was α,β -unsaturated trifluoromethyl ketone. We also examined the α -seleno trifluoroacetyl olefination of the other aldehydes and the results are shown in Table 1. (E)-Cinnamaldehyde and phenylpropargyl aldehyde gave the trifluoromethyl ketones 14b,c (Entries 2 and 3); however, the reaction of **2** with ketones such as cyclopentanone did not afford the allylic alcohols.

Next, we performed the lithiation of 2 by transmetalation (method B) and examined the reaction with mesityl aldehyde. The allylic alcohol 7a was obtained in moderate yield, accompanied by n-butyl phenyl selenide. The isomerization of 7a under the same condition afforded the α,β -unsaturated trifluoromethyl ketone **15a** (entry 4). The trifluoroacetyl olefinations of the ketones, such as acetophenone and cyclododecanone, proceeded in good yields (entries 5 and 7). Furthermore, we performed the α -seleno olefination using β -pentafluoroethyl vinylic selenide 3 with aldehydes to afford the corresponding pentafluoroethyl ketones 17a,b (entries 8 and 9). Nonselenium-type olefinations of the aldehyde and ketone exclusively gave the ketones 18a,b (entries 10 and 11). The α -thio perfluoroacyl olefinations, which have previously been reported, are quite limited for the pentafluoropropionyl olefinations because the β -pentafluoroethyl vinylic sulfide could be obtained only in low yields.⁴ This perfluoroacyl olefinations reported here are versatile and suitable for the preparations of the α,β -unsaturated perfluoroalkyl ketones bearing the long perfluoroalkyl groups. The heptafluoropropionyl or the nonafluorovaleryl olefinations using the vinylic selenide 4.5 gave the α,β -unsaturated ketones **19–22** (entries 12–15).

We also examined the tandem olefination of the α , β unsaturated perfluoroalkyl ketones as shown in Scheme 3. It is noteworthy that the treatment of the dienyl alcohols **23** and **24** with acid afforded the 4,6-bis-(perfluoroalkyl)-*2H*-pyrans **25** and **26**, accompanied by the 1,3-butadienyl perfluoroalkyl ketone acetals **27** and **28**, not the dienyl ketone **29**. Much attention has been paid to the fluorinated heterocycles;¹¹ so that, they

⁽¹⁾ Yoshimatsu, M.; Gotoh, S.; Ikeda, K.; Komori, M. J. Org. Chem. 1998, 63, 6619-6624.

⁽²⁾ Yoshimatsu, M.; Oguri, K.; Ikeda, K.; Gotoh, S. J. Org. Chem. 1998, 63, 4475-4480.

⁽³⁾ Yoshimatsu, M.; Gotoh, S.; Tanabe, G.; Muraoka, O. *Chem. Commun.* **1999**, 909–910.

⁽⁴⁾ For general experimental procedures, see: Yoshimatsu, M.; Sugimoto, T.; Okada, N.; Kinoshita, S. *J. Org. Chem.* **1999**, *64*, 5162–5165.

⁽⁶⁾ Aldol condensation: Vlattas, I.; Vecchia, L. D.; Lee, A. O. *J. Am. Chem. Soc.* **1976**, *98*, 2008–2010. Mead, D.; Loh, R.; Asato, A. E.; Lin, R. S. H. *Tetrahedron Lett.* **1985**, *26*, 2873–2876. Katsuyama, I.; Funabiki, K.; Matsui, M.; Muramatsu, H.; Shibata, K. *Chem. Lett.* **1996**, 179–180.

⁽⁸⁾ Conjugate addition of the high order cyano cuprate to acetylenic trifluoromethyl ketone: Linderman, R. J.; Lonikar, M. S. *J. Org. Chem.* **1988**, *53*, 6013–6022.

⁽⁹⁾ Denis, J. M.; Desauvage, S.; Hevesi, L.; Krief, A. *Tetrahedron Lett.* **1981**, *22*, 4009–4012.

⁽¹⁰⁾ Seebach, D.; Peleties, N. *Chem. Ber.* **1972**, *105*, 511–520. Burton, A.; Hevesi, L.; Dumont, W.; Cravador, A.; Krief, A. *Synthesis* **1979**, 877–880. Raucher, S.; Koolpe, G. A. *J. Org. Chem.* **1978**, *43*, 3794–3796.

⁽¹¹⁾ Filler, R. In Organofluorine Chemicals and Their Industrial Applications; Banks, R. E., Ed.; Ellis Horwood: London, 1979; p 123. Biomedicinal Aspect of Fluorine Chemistry; Filler, R., Kobayashi, Y., Eds.; Kodansha & Elsevier Biomedical: Tokyo, 1982; p 1.

 a Reagent: (i) lithium 2,2,6,6-tetramethylpiperidide (LTMP)/ RfCO_2Et/MsCl/ $-50\ ^\circ C.$

would be expected to show the interesting biological activities.¹² Now we are examining the further investigation of the uneque 4,6-bis(perfluoroalkyl)pyran formations. These results will be reported elsewhere.

Experimental Section⁴

Preparation of (E)-2-Ethoxy-1,1,1-trifluoro-3-(phenylseleno)prop-2-ene (2). Typical Procedure. A THF (8.00 mL) solution of bis(phenylseleno)methane (1) (6.00 g, 18.4 mmol) was added dropwise to a THF (30.0 mL) solution of lithium 2,2,6,6tetramethylpiperidide [prepared from 2,2,6,6-tetramethylpiperidine (3.90 g, 27.6 mmol) and n-BuLi (16.0 mL of 1.50 M n-BuLi in n-hexane solution, 23.9 mmol)] under an Ar atmosphere at -50 °C. The mixture was stirred for 10 min, ethyl trifluoroacetate (6.60 mL, 55.2 mmol) and then methanesulfonyl chloride (3.16 g, 27.6 mmol) was added dropwise to it. The whole was stirred for 10 min and poured into water (150 mL). The organic layer was separated and the aqueous layer was extracted with ether. The combined organic layer was dried over MgSO₄. The solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel eluting with hexane to give the title compound 2 (2.31 g, 43%) as a pale yellow oil.

(*E*)-2-Ethoxy-1,1,1-trifluoro-3-(phenylseleno)prop-2ene (2): ¹H NMR (400 MHz, CDCl₃) δ 1.34 (3H, t, J = 7 Hz), 3.82 (2H, q, J = 7 Hz), 5.80 (1H, s), 7.30–7.31 (3H, m), 7.52– 7.54 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ 14.4 (q), 65.3 (t), 97.7 (d), 120.9 (s, q, J = 275 Hz), 128.1 (d), 129.7 (d × 2), 131.0 (s), 132.7 (d × 2), 143.5 (s, q, J = 34 Hz); ¹⁹F NMR (376.4 MHz, CDCl₃) δ –10.98 (3F, s); MS *m*/*z* 139 (M⁺ – PhSe). Anal. Calcd for C₁₁H₁₁F₃OSe: C, 44.76; H, 3.76. Found: C, 44.81; H, 3.74.

(*E*)-3-Ethoxy-1,1,1,2,2-pentafluoro-4-(phenylseleno)but-3-ene (3): ¹H NMR δ 1.32 (3H, t, J = 7 Hz), 3.83 (2H, q, J = 7 Hz), 5.94 (1H, s), 7.30–7.33 (3H, m), 7.53–7.55 (2H, m); ¹³C NMR δ 14.3 (q), 65.5 (t), 100.9 (d), 111.3 (s, tq, J = 257, 39 Hz), 119.0 (s, qt, J = 288, 39 Hz), 128.2 (d), 129.7 (d $\times 2$), 131.7 (s), 132.9 (d $\times 2$), 142.1 (s, t, J = 26 Hz); ¹⁹F NMR δ –37.83 (2F, q, J = 1 Hz), -5.39 (3F, t, J = 3 Hz); MS m/z 189 (M⁺ – PhSe). Anal. Calcd for C₁₂H₁₁F₅OSe: C, 41.76; H, 3.21. Found: C, 41.72; H, 3.20.

Preparation of (*E*)-2-Ethoxy-1,1,1-trifluoro-4-phenyl-3-(phenylseleno)but-2-en-4-ol (6a). Typical Procedure. A THF (1.00 mL) solution of (*E*)-2-ethoxy-1,1,1-trifluoro-3-(phenylseleno)prop-2-ene (2) (0.30 g, 1.00 mmol) was added dropwise to a THF (3.0 mL) solution of lithium 2,2,6,6-tetramethylpiperidide (prepared from 2,2,6,6-tetramethylpiperidine (0.28 g, 2.00 mmol) and *n*-BuLi (1.00 mL, 1.50 mmol)) under an Ar atmosphere at -78 °C. The reaction mixture was stirred for 10 min. A THF (1.00 mL) solution of benzaldehyde (0.16 g, 1.50 mmol) was added to the mixture. The workup procedure gave the title compound **6a** (0.29 g, 72%) as a yellow oil: ¹H NMR δ 1.17 (3H, t, J = 7 Hz), 2.83 (1H, s), 3.82–3.98 (2H, m), 5.97 (1H, d, J = 7 Hz), 7.13–7.20 (3H, m), 7.21–7.35 (7H, m); ¹³C NMR δ 15.2 (q), 69.3 (t), 70.1 (d, q, J = 3 Hz), 121.0 (s, q, J = 280 Hz), 125.8 (d \times 2), 127.6 (d), 128.4 (d \times 2), 129.1 (d \times 2), 129.4 (s), 132.7 (d \times 2), 134.2 (s), 140.7 (s), 145.0 (s, q, J = 33 Hz); ¹⁹F NMR δ –18.13 (3F, s); MS m/z 402 (M⁺). Anal. Calcd for C₁₈H₁₇F₃O₂Se: C, 53.88; H, 4.27. Found: C, 53.84; H, 4.32.

(Z)-2-Ethoxy-1,1,1-trifluoro-4-mesitylbut-2-en-4-ol (7a): ¹H NMR δ 1.32 (3H, t, J = 7 Hz), 2.24 (3H, s), 2.40 (6H, s), 3.68–3.83 (2H, m), 5.37 (1H, d, J = 9 Hz), 6.03 (1H, dd, J = 9, 1 Hz), 6.82 (2H, s); ¹³C NMR δ 14.2 (q), 20.7 (q × 2), 20.9 (q), 64.6 (t), 65.0 (d, q, J = 2 Hz), 108.0 (d), 120.8 (s, q, J = 276 Hz), 130.5 (d × 2), 135.8 (s), 136.3 (s × 2), 137.4 (s), 145.9 (s, q, J = 34 Hz); ¹⁹F NMR δ –12.23 (3F, s); MS m/z 273 (M⁺ – Me). Anal. Calcd for C₁₅H₁₉F₃O₂: C, 62.49; H, 6.64. Found: C, 62.69; H, 6.72.

(*E*)-3-Ethoxy-1,1,1,2,2-pentafluoro-6,6-dimethyl-4-(phenylseleno)hept-3-en-5-ol (8a): ¹H NMR δ 0.97 (9H, s), 1.13 (3H, t, J = 7 Hz), 2.84 (1H, dd, J = 10, 1 Hz), 3.82–3.90 (1H, m), 4.19–4.26 (1H, m), 4.56 (1H, d, J = 10 Hz), 7.19–7.23 (3H, m), 7.41–7.43 (2H, m); ¹³C NMR δ 15.3 (q), 26.9 (q × 3), 36.6 (s), 70.2 (t), 74.3 (d, t, J = 13 Hz), 111.7 (s, qt, J = 37, 259 Hz), 118.8 (s, qt, J = 37, 288 Hz), 127.5 (d), 129.2 (d × 2), 131.1 (d × 2), 131.4 (s), 138.1 (s), 144.7 (s, t, J = 24 Hz); ¹⁹F NMR δ –33.25 (1F, d, J = 273 Hz), -31.77 (1F, d, J = 273 Hz), -5.62 (3F, t, J = 2 Hz); MS *m*/z 432 (M⁺). Anal. Calcd for C₁₇H₂₁F₅O₂Se: C, 47.34; H, 4.91. Found: C, 47.40; H, 4.85.

(Z)-3-Ethoxy-1,1,1,2,2-pentafluoro-5-mesitylpent-3-en-5ol (9a): ¹H NMR δ 1.31 (3H, t, J = 7 Hz), 1.95 (1H, brs), 2.25 (3H, s), 2.41 (6H, s), 3.71–3.86 (2H, m), 5.55 (1H, d, J = 9 Hz), 6.06 (1H, dt, J = 9, 2 Hz), 6.83 (2H, s); ¹³C NMR δ 14.2 (q), 20.8 (q × 2), 20.9 (q), 64.7 (t), 64.8 (d, t, J = 3 Hz), 111.1 (d), 111.3 (s, qt, J = 37, 260 Hz), 118.9 (s, qt, J = 37, 288 Hz), 130.5 (d × 2), 136.0 (s), 136.3 (s × 2), 137.5 (s), 145.2 (s, J = 27 Hz); ¹⁹F NMR δ –37.68 (1F, d, J = 282 Hz), -36.46 (1F, d, J = 282 Hz), -5.24 (3F, s); MS m/z 219 (M⁺ – mesityl). Anal. Calcd for C₁₆H₁₉F₅O₂: C, 56.80; H, 5.66. Found: C, 57.21; H, 5.68.

(*E*)-4-Ethoxy-1,1,1,2,2,3,3-heptafluoro-7,7-dimethyl-5-(phenylseleno)oct-4-en-6-ol (*E*)-(10): ¹H NMR δ 0.96 (9H, s), 1.36 (3H, t, J = 7 Hz), 2.87 (1H, d, J = 12 Hz), 3.89–3.93 (1H, m), 4.05–4.08 (1H, m), 4.53 (1H, d, J = 12 Hz), 7.21–7.27 (3H, m), 7.44–7.46 (2H, m); ¹⁹F NMR δ –47.11 (2F, s), -33.98 (1F, dq, J = 278, 9 Hz), -27.98 (1F, dq, J = 278, 9 Hz), -2.56 (3F, t, J = 10 Hz); MS *m*/*z* 482 (M⁺). Anal. Calcd for C₁₈H₂₁F₇O₂Se: C, 44.92; H, 4.40. Found: C, 45.43; H, 4.47.

(Z)-4-Ethoxy-1,1,1,2,2,3,3-heptafluoro-6-phenylhex-4-en-6-ol (11): ¹H NMR δ 1.30 (3H, t, J = 7 Hz), 2.20 (1H, brs), 3.69– 3.81 (2H, m), 5.23 (1H, d, J = 10 Hz), 5.65 (1H, d, J = 10 Hz), 7.23–7.39 (5H, m); ¹⁹F NMR δ –49.77 (2F, s), -35.74 (1F, dq, J= 284, 9 Hz), -33.90 (1F, dq, J = 284, 9 Hz), -2.87 (3F, t, J =9 Hz); MS m/z 346 (M⁺). Anal. Calcd for C₁₄H₁₃F₇O₂: C, 48.56; H, 3.78. Found: C, 50.98; H, 4.13.

(*E*)-5-Ethoxy-1,1,1,2,2,3,3,4,4-nonafluoro-8,8-dimethyl-6-(phenylseleno)non-5-en-7-ol (*E*)-(12): ¹H NMR δ 0.96 (9H, s), 1.36 (3H, t, J = 7 Hz), 2.86 (1H, d, J = 12 Hz), 3.88–3.94 (1H, m), 4.04–4.10 (1H, m), 4.52 (1H, d, J = 12 Hz), 7.20–7.30 (3H, m), 7.43–7.46 (2H, m); ¹⁹F NMR δ –49.17 to –48.29 (1F, m), -47.77 to –46.91 (1F, m), –44.47 to –43.67 (1F, m), –43.37 to -42.57 (1F, m), –33.04 (1F, brd, J = 280 Hz), –27.84 (1F, brd, J = 280 Hz), –3.16 (3F, t, J = 10 Hz); high-resolution mass calcd for C₁₉H₂₁F₉O₂Se: 532.0562, found *m*/*z* 532.0554.

(Z)-5-Ethoxy-1,1,1,2,2,3,3,4,4-nonafluoro-7-phenylhept-5en-7-ol (Z)-(13): ¹H NMR δ 1.32 (3H, t, J = 7 Hz), 1.57 (1H, brs), 3.75–3.83 (2H, m), 5.26 (1H, d, J = 10 Hz), 5.68 (1H, brd, J = 10 Hz), 7.28–7.44 (5H, m); ¹⁹F NMR δ –48.42 to –48.35 (2F, m), –46.03 to –45.95 (2F, m), –34.75 (1F, dt, J = 282, 13

Table 1. α-Seleno or Nonselenoperfluoroacyl Olefinations of Aldehydes and Ketones

Y

Ý

Rf SePh_1) Condition A or B R1 从 _ Rf _ TSOH R1 从 _ Rf							
	$FtO H 2) B^1COB^2 B^2 \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$						
		2-5	_,		H OEt	R ² O	
				6	-13	14-22	
	enol ether	carbonyl compo					
		F					
entry	(Rf)	\mathbb{R}^1	\mathbb{R}^2	conditions	Y	alcohol (% yield)	products (% yields)
1	2 (CF ₃)	Ph	Н	\mathbf{A}^{a}	PhSe	(E)- 6a (72)	(Z)- 14a (53)
2	2	(E)-PhCH=CH	Н	Α	PhSe	(E)- 6b (74)	(Z)-14b (70)
3	2	phenylethynyl	Н	Α	PhSe	(E)- 6c (48)	(E)- and (Z)-14c (72) ^b
4	2	Mesityl	Н	\mathbf{B}^{c}	н	(Z)-7a (51)	(<i>E</i>)- 15a (95)
5	2	Ph	Me	В	Н	(Z)-7b (48)	(<i>E</i>)-15b (62)
6	2	phenylethynyl	Н	В	Н	(Z)-7c (57)	(E) -15c (71) (E) -16c $(10)^d$
7	2	(ČH ₂) ₁₁		В	Н	7d (55)	15d (68)
8	3 (CF_2CF_3)	t-Bu	Н	Α	PhSe	(E)- 8a (64)	(Z)-17a (94)
9	3	(E)-PhCH=CH	Н	Α	PhSe	(E)- 8b (65)	(Z)-17b (79)
10	3	Mesityl	Н	В	Н	(Z)- 9a (68)	(E)- 18a (96)
11	3	(<i>E</i>)-PhCH=CH	Me	В	Н	(Z)- 9b (47)	(E)- and (Z)-18b (91) ^e
12	$4 (CF_2CF_2CF_3)$	t-Bu	Н	Α	PhSe	(<i>E</i>)- and (<i>Z</i>)- 10 (43) ^{<i>f</i>}	(<i>Z</i>)- 19 (90)
13	4	Ph	Н	В	Н	(Z)- 11 (61)	(E)- 20 (90)
14	5 (CF ₂ CF ₂ CF ₂ CF ₃)	<i>t</i> -Bu	Н	Α	PhSe	(<i>E</i>)- and (<i>Z</i>)- 12 (62) ^g	(Z)- 21 (58)
15	5	Ph	Н	В	Н	(Z)- 13 (73)	(<i>E</i>)- 22 (78)

^{*a*} Condition A: lithium 2,2,6,6-tetramethylpiperidide/THF/–78 °C/aldehydes. ^{*b*} EZ = 31:69. ^{*c*} Condition B: BuLi/THF/–78 °C/aldehydes or ketones. ^{*d*} **16c:** (*E*)-2,2-diethoxy-1,1,1-trifluoro-6-phenylhex-3-en-5-yne. ^{*e*} EZ = 65:35. ^{*f*} EZ = 98:2. ^{*g*} EZ = 37:63.

^a Reagents: (i) BuLi/Rf(EtO)C=CHSePh/-78 °C; (ii) TsOH/83 °C.

Hz), -32.87 (1F, dt, J = 282, 13 Hz), -3.11 (3F, t, J = 10 Hz); high-resolution mass calcd for $C_{15}H_{13}F_9O_2$ 396.0771, found m/z 396.0758.

(2Z,5*E*)-2-Ethoxy-1,1,1-trifluoro-6-mesityl-4-(trifluoro-methyl)hex-2,5-dien-4-ol (23): ¹H NMR δ 1.40 (3H, t, J = 7 Hz), 2.21 (6H, s), 2.25 (3H, s), 2.71 (1H, s), 3.17 (2H, q, J = 7 Hz), 5.25 (1H, s), 5.75 (1H, d, J = 16 Hz), 6.78 (1H, d, J = 16 Hz), 6.85 (2H, s); ¹³C NMR δ 14.1 (q), 20.6 (q × 2), 21.2 (q), 65.2 (t), 75.4 (s, q, J = 28 Hz), 102.9 (d), 119.8 (s, q, J = 276 Hz), 125.2 (s, J = 286 Hz), 128.9 (d × 2), 129.7 (d), 132.6 (s), 133.1 (d), 136.2 (s × 2), 137.2 (s), 149.4 (s, q, J = 37 Hz); ¹⁹F NMR δ –16.06 (3F, s), 1.45 (3F, s); MS *m*/*z* 382 (M⁺). Anal. Calcd for C₁₈H₂₀F₆O₂: C, 56.55; H, 5.27. Found: C, 56.54; H, 5.34.

Preparation of (*Z***)-1,1,1-Trifluoro-4-phenyl-3-(phenylseleno)but-3-en-2-one (14a). Typical Procedure.** A ClCH₂CH₂-Cl (3.00 mL) solution of **6a** (0.26 g, 0.65 mmol) and *p*-toluenesulfonic acid (0.16 g, 0.84 mmol) was heated at 83 °C for 10 min. The mixture was poured into a saturated NaHCO₃ (50.0 mL). The workup procedure afforded the title compound (0.12 g, 53%) as a yellow oil: ¹H NMR δ 7.19–7.23 (3H, m), 7.35–7.45 (5H, m), 7.76–7.78 (2H, m), 8.14 (1H, s); ¹³C NMR δ 116.3 (s, q, *J* = 293 Hz), 127.3 (s), 127.9 (d), 128.7 (d × 2), 129.4 (s), 129.6 (d × 2), 131.3 (d × 2), 131.41 (d), 132.3 (d × 2), 134.4 (s), 150.4 (d, q, *J* = 3 Hz), 180.1 (s, q, *J* = 26 Hz); ¹⁹F NMR δ –13.63 (3F, s); MS *m*/z 356 (M⁺). Anal. Calcd for C₁₆H₁₁F₃OSe: C, 54.10; H, 3.12. Found: C, 54.04; H, 3.22.

(*E*)-1,1,1-Trifluoro-4-mesitylbut-3-en-2-one (15a): mp 19–20 °C; ¹H NMR δ 2.13 (3H, s), 2.29 (6H, s), 6.68 (1H, dd, J=16, 1 Hz), 6.92 (2H, s), 8.20 (1H, d, J=16 Hz); ¹³C NMR δ 21.3 (q), 21.5 (q × 2), 116.7 (s, J=291 Hz), 121.3 (d), 129.9 (s), 130.1 (d × 2), 138.6 (s × 2), 140.9 (s), 148.6 (d), 180.2 (s, q, J=35 Hz); ¹⁹F NMR δ –1.48 (3F, s); MS *m*/*z* 242 (M⁺). Anal. Calcd for C₁₃H₁₃F₃O: C, 64.46; H, 5.41. Found: C, 64.33; H, 5.42.

(Z)-1,1,1,2,2-Pentafluoro-6,6-dimethyl-4-(phenylseleno)hept-4-en-3-one (17a): ¹H NMR δ 1.37 (9H, s), 7.22–7.25 (3H, m), 7.28 (1H, brs), 7.38–7.40 (2H, m); ¹³C NMR δ 30.0 (Me × 3), 36.0 (s), 107.6 (s, qt, J = 271, 37 Hz), 118.0 (s, qt, J = 288, 37 Hz), 127.5 (s), 127.9 (d), 129.2 (s), 129.6 (d × 2), 132.6 (d × 2), 163.2 (d), 182.7 (s, t, J = 26 Hz); ¹⁹F NMR δ –36.32 (2F, d, J = 1 Hz), -3.81 (3F, s); MS m/z 386 (M⁺). Anal. Calcd for C₁₅H₁₅F₅OSe: C, 46.69; H, 3.94. Found: C, 46.77; H, 3.92.

(E)-1,1,1,2,2-Pentafluoro-5-mesitylpent-4-en-3-one (18a): yellow needles; mp 44–47 °C; ¹H NMR δ 2.30 (3H, s), 2.39 (6H, s), 6.81 (1H, d, J= 16 Hz), 6.93 (2H, s), 8.24 (1H, d, J= 16 Hz); ¹³C NMR δ 21.3 (q), 21.5 (q × 2), 108.1 (s, qt, J= 38, 266 Hz), 118.4 (s, qt, J= 35, 287 Hz), 121.4 (d), 129.8 (s), 130.2 (d × 2), 138.9 (s × 2), 141.1 (s), 148.5 (d), 182.5 (s, qt, J= 26 Hz); ¹⁹F NMR δ –46.29 (2F, s), –4.32 (3F, s); MS *m*/*z* 173 (M⁺ – CF₂-CF₃). Anal. Calcd for C₁₄H₁₃F₅O: C, 57.54; H, 4.48. Found: C, 57.44; H, 4.47.

(Z)-1,1,1,2,2,3,3-Heptafluoro-7,7-dimethyl-5-(phenylseleno)oct-5-en-4-one (19): ¹H NMR δ 1.37 (9H, s), 7.21 (1H, s), 7.23–7.26 (3H, m), 7.39–7.42 (2H, m); ¹⁹F NMR δ –47.74 (2F, t, J = 7 Hz), -34.02 (2F, q, J = 9 Hz), -4.08 (3F, s); MS m/z436 (M⁺). Anal. Calcd for C₁₆H₁₅F₇OSe: C, 44.15; H, 3.47. Found: C, 44.24; H, 3.41.

(*E*)-1,1,1,2,2,3,3-Heptafluoro-6-phenylhex-5-en-4-one (20): ¹H NMR δ 7.18 (1H, d, J = 16 Hz), 7.40–7.53 (3H, m), 7.64– 7.67 (2H, m), 7.98 (1H, d, J = 16 Hz); ¹⁹F NMR δ –48.93 (2F, s), –44.07 (2F, q, J = 9 Hz), –2.80 (3F, t, J = 9 Hz); high-resolution mass calcd for C₁₂H₇F₇O 300.0385, found *m*/*z* 300.0378.

(Z)-1,1,1,2,2,3,3,4,4-Nonafluoro-8,8-dimethyl-6-(phenylseleno)non-6-en-5-one (21): ¹H NMR δ 1.37 (9H, s), 7.20 (1H, s), 7.24–7.27 (3H, m), 7.39–7.42 (2H, m); ¹⁹F NMR δ –47.53 to –47.46 (2F, m), –43.95 to –43.88 (2F, m), –33.19 (2F, brt, J = 13 Hz), –3.24 (3F, tt, J = 10, 3 Hz); MS *m*/*z* 486 (M⁺). Anal. Calcd for C₁₇H₁₅F₉OSe: C, 42.08; H, 3.12. Found: C, 42.28; H, 3.12.

(E)-1,1,1,2,2,3,3,4,4-Nonafluoro-7-phenylhept-6-en-5one (22): ¹H NMR δ 7.12 (1H, d, *J* = 16 Hz), 7.42–7.53 (3H, H, 2.26. **2H-2-Mesityl-4,6-bis(trifluoromethyl)pyran (25):** ¹H NMR δ 2.28 (3H, s), 2.37 (6H, s), 5.92 (2H, brs), 6.51 (1H, brs), 6.90 (2H, s); ¹⁹F NMR δ -10.46 (3F, s), -6.62 (3F, s); MS *m*/*z* 335 (M⁺ - 1). Anal. Calcd for C₁₆H₁₄F₆O: C, 57.15; H, 4.20. Found: C, 57.09; H, 4.29. (3*E*,5*E*)-1,1,1-Trifluoro-6-mesityl-4-(trifluoromethyl)hex-3,5-dien-2-one was observed by ¹H NMR spectroscopy at δ 6.74 (1H, brs), 6.92 (2H, s), 7.60 (1H, d, *J* = 17 Hz), 7.75 (1H, d, *J* = 17 Hz) and ¹⁹F NMR spectroscopy at δ -16.60 ppm.

Anal. Calcd for C₁₃H₇F₉O: C, 44.59; H, 2.01. Found: C, 44.70;

(3*E*,5*E*)-2,2-Diethoxy-1,1,1-trifluoro-6-mesityl-4-(trifluoromethyl)hex-3,5-diene (27): ¹H NMR (400 MHz, CDCl₃) δ 1.22 (6H, t, *J* = 7 Hz), 3.62–3.68 (4H, m), 5.95 (1H, s), 6.88 (2H, s), 6.96 (1H, d, J = 17 Hz), 7.02 (1H, d, J = 17 Hz); ¹⁹F NMR δ –4.14 (3F, s), 9.82 (3F, s); MS m/z 410 (M⁺). Anal. Calcd for C₂₀H₂₄F₆O₂: C, 58.53; H, 5.89. Found: C, 58.43; H, 5.73.

Acknowledgment. The support of a part of this work by the Ministry of Education, Science and Culture, Japan, is gratefully acknowledged.

Supporting Information Available: Characterization data for the products 4, 5, 6b,c, 7b–d, 8b, 9b, (*Z*)-12, 14b,c, 15b–d, 16c, 17b, and 18b and ¹H and ¹⁹F NMR spectra, complete with peak assignments of other products and full lists of IR spectral data. This material is available free of charge via the Internet at http://pubs.acs.org.

JO0003246